Réactivité chimique des aérosols d'iode en conditions accidentelles dans un réacteur nucléaire
Chemical reactivity of iodine aerosols in accidental conditions of a nuclear reactor
- Iodure de césium
- Iodure d'argent
- Aérosols radioactifs
- Accidents nucléaires
- Produits de fission
- Iodures
- Théorie de la fonctionnelle de densité
- Activation (chimie)
- Langue : Anglais
- Discipline : Molécules et matière condensée
- Identifiant : 2017LIL10098
- Type de thèse : Doctorat
- Date de soutenance : 16/11/2017
Résumé en langue originale
Lors d’un accident nucléaire grave, plusieurs produits de fission peuvent être libérés dans l'environnement. Parmi ces produits, l'iode radioactif (131I) est un des produits les plus dangereux en raison de ses conséquences radiologiques élevées durant les premières semaines suivant l'accident. Cet iode radioactif va principalement former des aérosols (CsI et AgI) dans le système de refroidissement du réacteur. Ils pourront ensuite réagir dans une atmosphère oxydante et humide pour former l’iode moléculaire gazeux I2. L'objectif de ce travail est d'étudier la réactivité des aérosols d'iodure afin d’identifier des voies chimiques possibles conduisant à la formation d'espèces d'iode volatiles. Nous avons mené une étude théorique basée sur la théorie fonctionnelle de la densité, comprenant les corrections de Van Der Waals, pour définir les mécanismes des réactions chimiques se produisant à la surface des aérosols. Les résultats montrent que l'adsorption de l'eau sur les particules CsI et AgI n'est possible qu’a basse des températures et pour des taux d’humidité élevées, non représentatives des conditions présentes dans l’enceinte de confinement mais pouvant être rencontrées à l’extérieur de cette même enceinte. Plusieurs voies de réaction conduisant à la formation d'espèces d'iode volatiles (I2, IOH et IH) ont été explorées. Ces travaux montrent que la formation de ces espèces nécessite une double oxydation de la surface. L’oxydant le plus réactif est OH°, résultant de la radiolyse à la vapeur. Dans ce cas, l'énergie d'activation pour formation d'I2 est respectivement de 1,2 eV et 1,0 eV pour CsI et du AgI.
Résumé traduit
If a nuclear severe accident happens to a nuclear power plant, fission products can be released in the environment by some leakages of the nuclear containment building. Among them radioactive iodine is one of the most dangerous species due to its high radiological consequences during the first weeks after the accident, mainly due to 131I isotope. Some iodide aerosols, formed in the reactor coolant system, are expected to reach the containment, typically CsI and AgI, and next can react in moist oxidizing atmosphere resulting from steam/oxygen radiolysis to form gaseous molecular iodine, I2. The aim of this work is to study the reactivity of iodide aerosols, it means understand/identify possible chemical pathways leading to the formation of volatile iodine species. Theoretical study based on density functional theory (DFT) including Van Der Waals corrections were performed to study at the molecular scale the chemical reactivity at the aerosol surfaces. Thermodynamic model was used also to determine the effect of temperature and pressure on the reactivity.The results show that adsorption of water on the CsI and AgI particles is only possible at low temperatures, not representative of severe accident conditions. Several reaction pathways leading to the formation of volatile iodine species (I2, IOH and IH) were explored. These works show that formation of these species requires the oxidation the surface twice. One type of oxidant were tested which is OH°, resulting from steam radiolysis and initially present in the containment after radiolysis of water. The activation energy of I2 formation using OH° oxidants is respectively 1.2 and 1.0 eV for CsI and AgI oxidation processes.
- Directeur(s) de thèse : Paul, Jean-François - Cantrel, Laurent
- Laboratoire : UCCS - Unité de Catalyse et Chimie du Solide - Institut de Radioprotection et de Sûreté Nucléaire (IRSN) (Fontenay-aux-Roses ; 2002-....)
- École doctorale : École doctorale Sciences de la matière, du rayonnement et de l'environnement (Lille ; 1992-....)
AUTEUR
- Hijazi, Houssam