Titre original :

Sur l'algèbre de cohomologie d'une fibre

Mots-clés en français :
  • Homotopie rationnelle

  • Homotopie
  • Cohomologie
  • Hopf, Algèbres de
  • Langue : Français
  • Discipline : Mathématiques
  • Identifiant : Inconnu
  • Type de thèse : Doctorat
  • Date de soutenance : 01/01/1997

Résumé en langue originale

La cohomologie d'un espace topologique à coefficients dans un corps est un invariant homotopique important en mathématiques. Sa structure d'espace vectoriel peut se calculer par de nombreux moyens. Par contre, sa structure d'algèbre est plus difficile à calculer. Souvent, un espace topologique intervient dans une fibration. Considérons une fibration p de fibre f. Une question fondamentale est de savoir quelles sont les données algébriques sur p, qui a la fois, déterminent et permettent de calculer l'algèbre de cohomologie de f. Felix, Halperin et thomas ont prouve que cette algèbre est déterminée par un morphisme d'algèbres de Hopf induit par p au niveau des complexes de chaînes singulières sur les espaces de lacets, grâce a la bar construction. Malheureusement, cela ne permet pas de calculer cette algèbre de cohomologie, car on ne peut pas passer aux modèles dans la catégorie des algèbres de Hopf. Par contre, dans la catégorie des algèbres de Hopf a homotopie près, introduite par Anick, il est possible de passer aux modèles. Nous généralisons la bar construction de Félix, halperin et thomas aux morphismes d'algèbres de hopf a homotopie près et établissons une condition de compatibilité des homotopies, pour que cette bar construction donne toujours l'algèbre de cohomologie de f. Cela nous permet de donner une methode pour calculer cette algèbre pour une fibration p obtenue par suspension. L'application la plus frappante est une généralisation a coefficients dans un corps de caractéristique différente de deux et dans le domaine d'Anick, d'un théorème classique de l'homotopie rationnelle affirmant que la fibre du modèle est un modèle de la fibre.

  • Directeur(s) de thèse : Dupont, Nicolas

AUTEUR

  • Menichi, Luc
Droits d'auteur : Ce document est protégé en vertu du Code de la Propriété Intellectuelle.
Accès libre