Titre original :

Méthodes de volumes finis et singularités

Mots-clés en français :
  • Navier-Stokes, Équations de
  • Singularités (mathématiques)
  • Anisotropie
  • Laplacien
  • Équations différentielles elliptiques
  • Volumes finis, Méthodes de

  • Langue : Français
  • Discipline : Mathématiques appliquées
  • Identifiant : Inconnu
  • Type de thèse : Doctorat
  • Date de soutenance : 01/01/2005

Résumé en langue originale

Dans ce travail, nous nous sommes intéressés à la discrétisation par différentes méthodes de Volumes Finis de problèmes elliptiques où apparaissent diverses singularités. La première partie évoque le cas des singularités bidimensionnelles intervenant lorsque nous considérons une équation elliptique sur un domaine non convexe. Nous décrivons donc pour le problème modèle de Laplace les singularités intervenant en nous aidant pour ceci des résultats de [Gri]. Pour les méthodes de Volumes Finis Centrée Cellule [Rer], d'Eléments-Volumes Finis conforme [Bank] et d'Eléments-Volumes Finis non-conforme [Chat] que nous redécrivons, nous montrons que l'utilisation d'un maillage uniforme implique une perte de l'ordre de convergence optimal et qu'un raffinement de maillage local permet la restitution de celui-ci. Des tests numériques viennent confirmer les estimées théoriques obtenues. Nous traitons ensuite le cas des systèmes de Stokes et de Navier-Stokes incompressibles et stationnaires toujours en dimension deux. Nous décrivons là encore les singularités intervenant dans de tels problèmes en nous aidant des résultats de [Dau] et [Lozi]. Pour la méthode de discrétisation adoptée (c'est-à-dire une méthode d'Eléments-Volumes Finis basée sur le couple d'éléments lp1 non-conforme / Ip0 [Tob]), nous montrons que les maillages uniformes ne permettent pas d'obtenir l'ordre de convergence optimal mais que des maillages judicieusement raffinés localement le permettent. Nous illustrons ceci numériquement. Nous appliquons enfin la méthode sur quelques cas tests de la mécanique des Fluides (cavité entraînée et marche descendante). Nous abordons ensuite la question des couches limites intervenant dans des problèmes singulièrement perturbés. Il est bien connu que la solution de problèmes elliptiques où l'opérateur de diffusion est « dominé » par l'opérateur de réaction et/ou de convection présente de forts gradients locaux mais suivant une seule direction d'espace. Les méthodes numériques utilisées sur des maillages uniformes n'arrivent alors pas à capturer ces fortes variations [Apel]. En conséquence, nous considérons un problème modèle de réaction-diffusion perturbé que nous discrétisons par diverses méthodes de Volumes Finis sur des maillages anisotropes, c'est-à-dire des maillages présentant des éléments « plats » et raffinés dans une seule direction d'espace (celle de fort gradient de la solution). Nous démontrons donc le bon comportement des méthodes de Volumes Finis Centrée Cellule et d'Eléments - Volumes Finis conforme sur ces maillages anisotropes. En revanche, pour la méthode d'Eléments-Volumes Finis non-conforme, nous expliquons le mauvais comportement obtenu si nous considérons des éléments triangulaires et utilisons de ce fait des éléments quadrangulaires afin de stabiliser la méthode. Pour chaque méthode, des essais numériques viennent valider les résultats obtenus. Nous nous intéressons en dernier lieu au cas des singularités tridimensionnelles. Les singularités intervenant dans un tel cas ont une nature plus variée qu'en dimension deux (singularités de coin et d'arête). Pour le problème de Laplace, nous décrivons dans un premier temps ces dernières [Lub]. Pour les méthodes de Volumes Finis Centrée Cellule, d'Eléments-Volumes Finis conforme et d'Eléments-Volumes Finis non-conforme que nous réintroduisons, nous pratiquons plusieurs tests numériques illustrant le meilleur taux de convergence obtenu sur des maillages raffinés de manière adéquate que sur des maillages uniformes. En outre, pour la méthode de Volumes Finis Centrée Cellule, nous introduisons un estimateur a-posteriori [Ver] que nous utilisons dans un test numérique pour lequel nous ne connaissons pas explicitement la solution.

  • Directeur(s) de thèse : Nicaise, Serge - Brézinski, Claude

AUTEUR

  • Djadel, Karim
Droits d'auteur : Ce document est protégé en vertu du Code de la Propriété Intellectuelle.
Accès libre