Titre original :

Développement d'un nouvelle technique de mesure du profil atmosphérique en aérosols à l'aide d'un lidar Raman-dépolarisation-fluorescence

Titre traduit :

Retrieval of height-resolved aerosol components using high performance multiwavelength Raman-depolarization-fluorescence lidar

Mots-clés en français :
  • Algorithme de restitution
  • Mesures de dépolarisation
  • Aérosols -- Propriétés microphysiques

  • Aérosols atmosphériques
  • Lidar
  • Inversion (géophysique)
  • Problèmes inverses
Mots-clés en anglais :
  • Atmospheric aerosol
  • Remote sensing
  • Inverse problem
  • Lidar measurements
  • Aerosol microphysical properties
  • Boreal

  • Langue : Anglais
  • Discipline : Terre, enveloppes fluides
  • Identifiant : 2023ULILR060
  • Type de thèse : Doctorat
  • Date de soutenance : 05/12/2023

Résumé en langue originale

La connaissance de la répartition verticale des propriétés optiques et microphysiques des aérosols est cruciale pour étudier l'évolution et le transport des aérosols, ainsi que leurs impacts sur la santé humaine, l'environnement local et le climat mondial. Dans ce travail nous avons développé un algorithme BOREAL pour restituer les propriétés microphysiques des aérosols à partir de combinaisons de mesures lidar d'extinction, de rétrodiffusion et de dépolarisation spectrales. Basé sur une estimation de vraisemblance maximale, l'algorithme de restitution utilise une approche d'itération non linéaire pour rechercher la meilleure adéquation entre les mesures et les contraintes. Les propriétés microphysiques des aérosols restituées comprennent la distribution de taille des particules, leur concentration volumique, leur rayon efficace, l'indice de réfraction complexe (CRI) et l'albédo de diffusion simple (SSA).Les performances de BOREAL, sa précision et la sensibilité des mesures sont évaluées à l'aide de données simulées. En général, la précision de la restitution est meilleure pour les particules de mode fin que pour les particules de mode grossier. Les simulations démontrent l'importance de l'exploitation de contraintes a priori pour améliorer la précision de la restitution du CRI et du SSA. Outre les particules sphériques, la performance de la restitution des particules non sphériques est également évaluée en intégrant trois modèles de diffusion de particules différents, à savoir les modèles Sphérique, Sphéroïdale et Irrégulier-Hexaédrique (IH), dans BOREAL. Les résultats montrent que l'intégration des mesures de dépolarisation dans l'inversion est essentielle pour mieux contraindre et stabiliser la restitution. De plus, l'approximation des particules non sphériques par des sphères dégrade manifestement la qualité de la restitution. Enfin, BOREAL est utilisé pour restituer les propriétés aérosols au cours d'événements de feux de biomasse, de poussières désertiques et les d'aérosols continentaux pollués détectés depuis la plateforme ATOLL. Les résultats sont analysés et comparés aux restitutions d'AERONET ainsi qu'aux résultats d'études précédentes, ce qui démontrer la robustesse de BOREAL pour l'application de données réelles et la caractérisation d'aérosols.Ce travail contribue aux études menées dans le cadre du Labex CaPPA et d'ACTRIS en quantifiant les propriétés microphysiques des aérosols à partir des observations lidar.

Résumé traduit

Vertical information on aerosol optical and microphysical properties is of significant importance to study aerosol evolution, transport, as well as their impacts on human health, local environment and global climate. This thesis developed an algorithm, the Basic algOrithm for REtrieval of Aerosol with Lidar (BOREAL), for retrieving heigh-resolved aerosol microphysical properties from combinations of extinction, backscattering and depolarization lidar measurements. Based on maximum likelihood estimation, the retrieval algorithm uses a nonlinear iteration approach to search for the best fit to both measurements and constraints. The retrieved aerosol microphysical properties include particle size distribution, volume concentration, effective radius, complex refractive index (CRI) and single scattering albedo (SSA).The performance of BOREAL, retrieval accuracy and measurement sensitivity are assessed through simulated data. In general, retrieval accuracy is higher for fine-mode particles than coarse-mode particles. The simulations demonstrate the importance of exploiting a priori constraint to improve the retrieval accuracy of CRI and SSA. Apart from spherical particles, performance of retrieving non-spherical particles is also evaluated by integrating three different particle scattering models, i.e., the Sphere, Spheroid and Irregular-Hexahedral (IH) models, into BOREAL. The results show incorporating depolarization measurements into inversion is essential to better constrain and stabilize the retrieval. Besides, approximating non-spherical particles to spheres will evidently degrade retrieval quality in cases of lidar measurements. In addition, BOREAL is applied to real lidar observations of different aerosol types, including biomass burning, dust and continental polluted aerosols at the ATOLL observatory. Results are analyzed and compared with retrievals from AERONET and previous studies, which demonstrates the robustness of BOREAL for real data application and aerosol characterization.Overall, this work contributes to Labex CaPPA and ACTRIS efforts to better quantify aerosol microphysical properties using lidar measurements.

  • Directeur(s) de thèse : Goloub, Philippe
  • Président de jury : Stachlewska, Iwona
  • Membre(s) de jury : Pérez-Ramírez, Daniel - Dubovik, Oleg - Hu, Qiaoyun - Miffre, Alain - Veselovskii, Igor - Khaykin, Sergey
  • Rapporteur(s) : Stachlewska, Iwona - Comeron Tejero, Adolfo
  • Laboratoire : Laboratoire d'Optique Atmosphérique (LOA)
  • École doctorale : École doctorale Sciences de la matière, du rayonnement et de l'environnement (Villeneuve d'Ascq, Nord)

AUTEUR

  • Chang, Yuyang
Droits d'auteur : Ce document est protégé en vertu du Code de la Propriété Intellectuelle.
Accès réservé à l'ensemble de la communauté universitaire jusqu'au 01/01/2025