Titre original :

Mécanismes de nucléation des particules volatiles dans les émissions des moteurs d'avions et leurs liens avec la composition du carburant

Titre traduit :

Nucleation mechanisms of volatile particles in aircraft engine emissions and their links with fuel composition

Mots-clés en français :
  • Particules volatiles
  • Chambre de simulation atmosphérique
  • Brûleur pour carburant liquide

  • Avions -- Moteurs -- Gaz d'échappement
  • Avions -- Carburants
  • Composés aromatiques polycycliques
  • Nucléation
  • Spectrométrie de masse
  • Carburants de remplacement
Mots-clés en anglais :
  • Aeronautic emissions
  • Volatile (vPM) and non-Volatile (nvPM) Particulate Matter
  • Particle formation
  • Atmopsheric chamber
  • Homogeneous nucleation
  • Aviation fuels

  • Langue : Anglais
  • Discipline : Energétique, thermique, combustion
  • Identifiant : 2023ULILR059
  • Type de thèse : Doctorat
  • Date de soutenance : 20/12/2023

Résumé en langue originale

L'une des préoccupations actuelles de l'industrie aéronautique est la diminution de la consommation de carburant et de l'empreinte environnementale. En effet, les émissions aéronautiques ont un impact sur la qualité de l'air et notamment au niveau des zones aéroportuaires. Comme d'autres secteurs du transport, le trafic aérien génère des gaz à effet de serre (2 % du total dans le monde), des traînées de condensation ainsi que des particules volatiles et non volatiles (vPM et nvPM).Pour réduire ces émissions, différentes approches ont été pensées avec en particulier l'usage de carburants aéronautiques durables (SAF - Sustainable Aviation Fuels). L'objectif des SAF est de réduire les émissions nettes de CO2 et de nvPM. Cependant, la combustion de ces carburants peut entraîner la formation de nouveaux polluants qui réagissent avec l'atmosphère en formant des aérosols secondaires (SA). Dans le cadre du projet UNREAL (Unveiling Nucleation mechanism in aiRcraft Engine exhAust and its Link with fuel composition), l'objectif de ce travail était d'étudier les différents mécanismes au niveau moléculaire à l'origine de la formation de nouvelles particules à partir des rejets moteurs alimentés par des carburants de compositions différentes, allant du Jet A-1 standard à du carburant 100 % SAF.La caractérisation physico-chimique des émissions en conditions réelles en sortie moteur est un défi à la fois d'un point de vue technique et économique. Pour pallier à cela un brûleur mini-CAST, adapté à la combustion de carburants liquides aéronautiques, a été utilisé comme alternative pour obtenir des émissions comparables, dans une certaine mesure, à celles des moteurs aéronautiques. Une diminution des émissions de nvPM (concentration en nombre, concentration en masse et distribution de tailles) peut être observée en corrélation avec la quantité de composés aromatiques présents dans le carburant. De plus, l'analyse par spectrométrie de masse a révélé une diminution de l'intensité relative des HAP lors de l'emploi de carburants alternatifs. Les émissions du brûleur ont été injectées, avec ou sans filtration des suies, dans une chambre atmosphérique de vieillissement (chambre CESAM reproduisant les conditions atmosphériques au niveau du sol - LISA). Pour tous les carburants testés, la formation de vPM par nucléation homogène a été observée dans la chambre atmosphérique en l'absence de nvPM. Ce phénomène est particulièrement prononcé pour les carburants comprenant de grandes quantités de soufre dans leur composition. Cependant, dans les cas réels (présence de suies), la formation de vPM n'est observée que pour les carburants contenant de fortes quantités de soufre. La concentration de précurseurs gazeux formés pour les autres carburants n'est pas suffisante pour produire des vPM, notamment avec l'adsorption des gaz à la surface des particules de suies (nucléation hétérogène). Les techniques de caractérisation en ligne ont été complétées par des prélèvements sur filtre et une analyse par spectrométrie de masse, mettant en évidence la présence de HAP, d'hydrocarbures oxygénés, de composés soufrés et azotés. En utilisant des méthodes semi-quantitatives, il a été possible de mettre en relation la composition chimique (intensité relative de soufre et de HAP) avec la formation de vPM et leur répartition dans les phases particulaires et gazeuses des émissions.

Résumé traduit

One of the actual concerns of the aviation industry is to reduce fuel consumption and environmental footprint. Indeed, aviation emissions impact air quality in and around airports. As other transport sectors, aviation effluents need to be addressed to reduce greenhouse gases contribution (2% of these emissions are related to air transport worldwide), volatile and non-volatile Particulate Matter (vPM and nvPM) and indirect impact as condensation trails.To reduce these emissions, different approaches have been investigated, in particular the use of Sustainable Aviation Fuels (SAF). Aims of SAF are to decrease the net CO2 emissions and nvPM. However, combustion of these fuels may lead to new pollutants that can react with atmosphere by formation of secondary aerosols. As part of the UNREAL project (Unveiling Nucleation mechanism in aiRcraft Engine exhAust and its Link with fuel composition), the objective of this work was to study the different molecular mechanisms of new particle formation from the exhausts of aircraft engines fed by fuels with different composition, from the standard Jet A-1 to 100 % SAF fuel.The physicochemical characterisation of the particulate emissions from aircraft engines in real conditions is challenging both from the technical and economical point of view. Thus, a mini-CAST burner, suitable for the combustion of aeronautic liquid fuels, has been used as an alternative to obtain emissions comparable to some extent to those from aircraft engines. A decrease in nvPM emissions (number concentration, mass concentration and size distribution) can be observed in correlation with the quantity of aromatic compounds in the fuel. Moreover, the analysis by mass spectrometry revealed a decrease in the relative intensity of PAHs when alternative fuels were employed . Emissions from the burner have been injected, with and without soot filtration, into an atmospheric chamber for ageing (CESAM chamber reproducing atmospheric conditions at ground level - LISA). For all fuels tested formation of vPM by homogeneous nucleation has been observed in the atmospheric chamber in absence of nvPM. This phenomenon is particularly highlighted for fuels with high amounts of sulphur in their compositions. However, in real cases (presence of soot), the formation of vPM is only observed for the fuels containing high amounts of sulphur. The concentration of gaseous precursors formed for other fuels was not enough to produce vPM after being adsorbed on soot surface (heterogeneous nucleation). On-line characterisation techniques were completed by filter sampling and off-line mass spectrometry analysis, highlighting the presence of PAHs, oxygenated hydrocarbons, sulphur and nitrogen compounds. By employing semi-quantitative methods, it was possible to link the relative chemical composition (sulphur and PAH relative intensity) with vPM formation and their repartitions in particulate and gaseous phases.

  • Directeur(s) de thèse : Focsa, Cristian
  • Président de jury : Mercier, Xavier
  • Membre(s) de jury : Méry, Yoann - Petäjä, Tuukka - Delhaye, David - Ortega, Ismael Kenneth
  • Rapporteur(s) : Cabañas Galán, Beatriz - Miake-Lye, Richard
  • Laboratoire : Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM)
  • École doctorale : École doctorale Sciences de la matière, du rayonnement et de l'environnement (Villeneuve d'Ascq, Nord)

AUTEUR

  • Barrellon-Vernay, Rafaël
Droits d'auteur : Ce document est protégé en vertu du Code de la Propriété Intellectuelle.
Accès réservé à l'ensemble de la communauté universitaire jusqu'au 02/01/2025