Carbon-based electrocatalysts for CO2 reduction, PET hydrolysate, and water splitting towards value-added products
Catalyseurs électrochimiques à base de carbone pour la réduction du CO2, l'hydrolyse du PET et la séparation de l'eau en vue de produits à valeur ajoutée
- Catalyseurs électrochimiques
- Oxyde de bismuth
- Fractionnement de l’eau
- Cadre organique covalent
- Électrocatalyse
- Dioxyde de carbone
- Réduction électrochimique
- Polyéthylène térephtalate
- Hydrolyse
- Oxyde de graphène
- Catalyseurs au cuivre
- Catalyseurs au cobalt
- Catalyseurs au ruthénium
- Formiates
- Electrochemical catalysts
- CO2 reduction
- PET hydrolysate
- Covalent organic framework
- Langue : Anglais
- Discipline : Micro-nanosystèmes et capteurs
- Identifiant : 2023ULILN051
- Type de thèse : Doctorat
- Date de soutenance : 14/12/2023
Résumé en langue originale
Cette étude aborde les principaux défis mondiaux tels que les émissions de CO2, la crise énergétique et la mauvaise gestion des déchets plastiques PET, qui non seulement polluent l'environnement mais contribuent également aux émissions de CO2 lors de l'incinération. L'approche innovante présentée dans cette thèse offre une double solution, abordant simultanément les déchets PET et les émissions de CO2.Deux systèmes remarquables ont été explorés dans cette thèse. Le premier utilisait du carbonate d'oxyde de bismuth (BOC) fonctionnalisé de l'oxyde de graphène réduit (rGO) pour l'électroréduction cathodique du CO2 (CO2RR), tandis que CuCoO sur rGO était utilisé pour l'oxydation anodique de l'hydrolysat de PET. De manière impressionnante, le catalyseur anodique CuCoO@rGO a affiché une électroactivité exceptionnelle, atteignant un rendement faradique (FE) exceptionnel de 85,7 % à 1,5 V par rapport à RHE. Simultanément, le catalyseur cathodique BOC@rGO a démontré un FE impressionnant de 97,4 % à -0,8 V par rapport au RHE, facilitant la production de formiate à partir de CO2RR. Lorsqu'elle est intégrée dans une configuration d'électrolyseur, cette approche a abouti à une production d'acide formique à une faible tension de cellule de 1,9 V et à un FE formiate remarquable de 151,8 % à 10 mA cm-2.Un autre système utilisait une électrode 3D en feutre de charbon actif (aCF) comme substrat et du bismuth a été déposé électrochimiquement sur le CF (Bi@aCF) qui agit comme la cathode CO2RR et un feutre de carbone déposé au phosphate de nickel-cobalt (NiCoPOx@CF) pour l'anode. Procédé d'oxydation de l'hydrolysat de PET. Cette configuration a atteint un FE élevé de 94 % pendant CO2RR à -0,8 V par rapport au RHE, produisant du formiate, et un FE de 95 % pour l'oxydation anodique de l'hydrolysat de PET pour former un formiate à un faible potentiel de 1,5 V par rapport au RHE. Remarquablement, l'électrolyseur à deux électrodes a atteint un FE extraordinaire de 157 % pour produire du formiate à une tension de cellule de 1,8 V. Cette percée représente une nouvelle voie pour valoriser les déchets de PET, réduire les émissions de CO2 et promouvoir la durabilité environnementale.De plus, nos expériences ont également porté sur l'électrolyse de l'eau, où une nouvelle stratégie impliquant du Ru intégré dans une matrice de nitrure de carbone a été proposée. Cette approche, utilisant une structure organique covalente 2D CIN-1 avec Ru + 2 coordonné, a abouti à des nanoparticules d'oxyde de Ru avec des sites Ru de faible valence disposés en nanofils entre des couches de nitrure de carbone graphitique après pyrolyse. Ce matériau présentait des surpotentiels significativement inférieurs pour la réaction de dégagement d'hydrogène (HER) et la réaction de dégagement d'oxygène (OER) par rapport aux catalyseurs de référence au Pt et au RuO2, démontrant une stabilité catalytique remarquable. Cette découverte est extrêmement prometteuse pour faire progresser le domaine du fractionnement de l'eau et contribuer au développement de solutions énergétiques durables.
Résumé traduit
This study tackles the major global challenges such as CO2 emissions, energy crisis and PET plastic waste mismanagement, which not only pollutes the environment but also contributes to CO2 emissions during incineration. The innovative approach presented in this thesis offers a dual solution, addressing both PET waste and CO2 emissions simultaneously.Two remarkable systems have been explored in this thesis. The first utilized Bismuth oxide carbonate (BOC) functionalized reduced graphene oxide (rGO) for cathodic CO2 electroreduction (CO2RR), while CuCoO on rGO was employed for anodic PET hydrolysate oxidation. Impressively, the anodic CuCoO@rGO catalyst displayed exceptional electro-activity, achieving an outstanding Faradaic efficiency (FE) of 85.7% at 1.5V vs. RHE. Simultaneously, the cathodic BOC@rGO catalyst demonstrated an impressive FE of 97.4% at -0.8 V vs. RHE, facilitating the production of formate from CO2RR. When integrated into an electrolyzer setup, this approach resulted in formic acid production at a low cell voltage of 1.9 V and a remarkable formate FE of 151.8% at 10 mA cm-2.Another system employed a 3D activated carbon felt (aCF) electrode as substrate and Bismuth has been deposited electrochemically on the CF (Bi@aCF) which acts as the cathode CO2RR and nickel cobalt phosphate-deposited carbon felt (NiCoPOx@CF) for the anodic PET hydrolysate oxidation process. This setup achieved a high FE of 94% during CO2RR at -0.8 V vs. RHE, producing formate, and a FE of 95% for anodic PET hydrolysate oxidation to formate at a low potential of 1.5 V vs. RHE. Remarkably, the two-electrode electrolyzer attained an extraordinary FE of 157% to produce formate at a cell voltage of 1.8 V. This breakthrough represents a novel pathway for upcycling PET waste, reducing CO2 emissions, and promoting environmental sustainability.Additionally, our experiments also delved into water electrolysis, where a novel strategy involving Ru embedded in a carbon nitride matrix was proposed. This approach, utilizing a covalent organic framework 2D CIN-1 structure with coordinated Ru+2, resulted in Ru oxide nanoparticles with low-valence Ru sites arranged in nanowires between layers of graphitic carbon nitride after pyrolysis. This material exhibited significantly lower overpotentials for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) compared to benchmark Pt and RuO2 catalysts, demonstrating remarkable catalytic stability. This discovery holds tremendous promise for advancing the field of water splitting and contributing to the development of sustainable energy solutions.
- Directeur(s) de thèse : Boukherroub, Rabah - Szunerits, Sabine
- Président de jury : Happy, Henri
- Membre(s) de jury : Li, Hong
- Rapporteur(s) : Ozanam, François - Lagrost, Corinne
- Laboratoire : Institut d'Electronique, de Microélectronique et de Nanotechnologie
- École doctorale : École graduée Sciences de l’ingénierie et des systèmes (Lille ; 2021-....)
AUTEUR
- Kilaparthi, Sravan Kumar