Titre original :

Conception et évaluation d'une endoprothèse vasculaire par impression 3D pour le traitement des anévrismes complexes de l'aorte abdominale

Titre traduit :

Design and evaluation of a 3D-printed vascular endograft for the treatment of complex aortic aneurysms

Mots-clés en français :
  • Endoprothèse vasculaire
  • Anévrisme de l'aorte abdominale
  • Fabrication additive (FDM)
  • Caractérisation d'élastomère thermoplastique
  • Evaluation biologique in vitro
  • Vieillissement

  • Prothèses internes
  • Anévrisme de l'aorte abdominale
  • Prototypage rapide
  • Impression 3D
  • Matériaux -- Détérioration
  • Endoprothèses
  • Anévrysme de l'aorte abdominale
  • Impression tridimensionnelle
Mots-clés en anglais :
  • Vascular endograft
  • Abdominal aortic aneurysm
  • Additive manufacturing (FDM)
  • Thermoplastic elastomer characterization
  • In vitro biological evaluation
  • Aging

  • Langue : Français
  • Discipline : Sciences de la vie et de la santé
  • Identifiant : 2022ULILS057
  • Type de thèse : Doctorat
  • Date de soutenance : 03/10/2022

Résumé en langue originale

La réparation endovasculaire (EVAR) d'un anévrisme de l'aorte abdominale (AAA) consiste en la mise en place d'une endoprothèse (EDP) par chirurgie mini-invasive au sein de l'anévrisme. Cet acte permet de prévenir la rupture des tissus endommagés impliqués dans un AAA, défini comme la dilatation localisée du diamètre de l'aorte. Lorsque l'amont de l'anévrisme englobe les artères périphériques rénales et/ou viscérales, l'AAA est qualifié de complexe. Dans ce cas, l'EDP déployée est dite « fenêtrée », en d'autres termes, perforée à l'emplacement des jonctions vers les artères périphériques. La prise en charge dans le cadre d'un AAA complexe devient alors plus limitante car l'EDP fenêtrée sera conçue sur mesure afin de correspondre à l'anatomie de l'anévrisme et à la position des artères périphériques du patient. Cela implique un délai de fabrication de plusieurs semaines, limite la prise en charge aux anévrismes stables et exclut les situations d'urgence. Dans ce contexte, l'impression 3D présente un intérêt considérable pour la fabrication d'EDP sur mesure et dans des délais très courts. Ainsi, l'objectif de ce travail de thèse est de concevoir un prototype d'endoprothèse par impression 3D d'un polyuréthane thermoplastique (TPU) de grade médical (élastomère thermoplastique). Le présent travail permettra de valider le procédé de conception et la fonctionnalité de notre 3D-EDP pour son application finale en tant que dispositif médical implantable.Dans un premier temps, l'impact du procédé de fabrication sur les propriétés chimiques, physiques et physico-chimiques du TPU a été étudié à chaque étape, des granulés à la stérilisation par rayons gamma d'une prothèse fabriquée par dépôt de filament fondu (FDM). L'évaluation préliminaire in vitro de la cytotoxicité et de l'hémocompatibilité du TPU a été réalisée après l'étape d'impression 3D et de stérilisation. Un vieillissement préliminaire du TPU en conditions oxydantes extrêmes a été réalisé afin de prédire l'évolution de ses propriétés sur le long terme. Par la suite, une stratégie de conception d'un prototype implantable par voie endovasculaire a été développée. Les propriétés de ce prototype stérilisé ont été caractérisées par différentes techniques (CES, ATG, DSC, FTIR, MEB, goniométrie, traction uniaxiale, …). Ses propriétés biologiques ont été évaluées in vitro par des tests de cytocompatibilité, hémocompatibilité et contact avec les macrophages pendant 24 heures (inflammation aigüe). L'évolution de ses propriétés physico-chimiques et mécaniques a été suivie par des études de vieillissement in vitro.La caractérisation des propriétés chimiques, physiques et physico-chimiques du TPU a montré que l'impression 3D FDM et la méthode de stérilisation par rayons gamma constituent une voie de fabrication viable d'un prototype comprimable dans un cathéter d'introduction endovasculaire. L'évaluation biologique in vitro a montré la cytotocompatibilité du prototype par la méthode de l'extrait. De plus, le prototype s'est révélé faiblement hémolytique et les plaquettes adhérant à sa surface n'étaient pas activées. La faible sécrétion de cytokines (IL-6 et TNF-a) au contact des macrophages inactivés a montré que le prototype d'EDP ne présente pas de caractère pro-inflammatoire. Enfin, les études de vieillissement ont montré un impact sur les propriétés mécaniques et de surface de notre prototype d'EDP sans toutefois compromettre sa fonctionnalité. Par la suite, la stratégie de conception pourrait évoluer vers une fonctionnalisation de l'EDP afin de prévenir les infections et les thromboses responsables respectivement de 2% et 6% des complications post-opératoires.

Résumé traduit

Endovascular repair (EVAR) of an abdominal aortic aneurysm (AAA) involves the placement into the aneurysm of a stent graft (SG) by minimally invasive surgery. This procedure prevents rupture of the damaged tissue involved in an AAA, defined as a localized diameter dilation of the aorta. When the upstream portion of the aneurysm includes the peripheral renal and/or visceral arteries, the AAA is qualified as complex. In this case, the deployed SG is said “fenestrated”, in other words, perforated at the site of junctions to the peripheral arteries. Management of a complex AAA becomes more limiting as the fenestrated SG will be custom designed to match the anatomy of the aneurysm and the position of the peripheral arteries of the patient. This implies a manufacturing delay of several weeks, limits the management to stable aneurysms and excludes emergency situations. In this context, 3D printing (3DP) is of considerable interest for the fabrication of custom-made SGs in a very short time frame. Thus, the objective of this thesis work is to design a SG prototype by 3D printing of a medical grade thermoplastic polyurethane (TPU) (thermoplastic elastomer). The present work will validate the manufacturing process and the functionality of our 3DP-SG for its final application as an implantable medical device.First, the impact of the manufacturing process on the chemical, physical and physicochemical properties of TPU was studied at each step, from the pellets to the gamma-ray sterilization of a graft manufactured by fused filament deposition (FDM). In vitro preliminary evaluation of the cytotoxicity and hemocompatibility of TPU was carried out after the 3D printing and sterilization step. Aging of TPU under extreme oxidizing conditions was performed to predict the evolution of its properties in the long term. Subsequently, a design strategy for an endovascular implantable prototype was developed. The properties of said prototype were characterized by different techniques (SEC, TGA, DSC, FTIR, SEM, goniometry, uniaxial traction, ...). Its biological properties were evaluated in vitro by tests of cytocompatibility, hemocompatibility and contact with macrophages for 24 hours (acute inflammation). Moreover, the evolution of its physicochemical and mechanical properties was evaluated by in vitro aging studies.The characterization of the chemical, physical and physicochemical properties of TPU enabled the validation of a FDM printing manufacturing route and gamma ray sterilization of a crimpable SG prototype. The in vitro biological evaluation showed the non-cytotoxicity of the SG prototype by the extraction method. Moreover, the prototype was found to be weakly hemolytic and the platelets adhered on its surface were not activated. The low secretion of cytokines (IL-6 and TNF-α) upon contact with inactivated macrophages showed that the SG prototype does not exhibit a pro-inflammatory characteristic. Finally, aging studies showed an impact on the mechanical and surface properties of our SG prototype without compromising its functionality. Subsequently, the design strategy could evolve towards a functionalization of the SG prototype in order to prevent infections and thrombosis responsible for 2% and 6% of postoperative complications respectively.

  • Directeur(s) de thèse : Blanchemain, Nicolas - Martel, Bernard
  • Président de jury : Soulestin, Jérémie
  • Membre(s) de jury : Gand, Adeline - Jean Baptiste, Elixène
  • Rapporteur(s) : Raquez, Jean-Marie - Chaubet, Frédéric
  • Laboratoire : Médicaments et Biomatériaux à Libération Contrôlée - UMET - Unité Matériaux et Transformations
  • École doctorale : École doctorale Biologie-Santé (Lille)

AUTEUR

  • M'Bengue, Marie-Stella
Droits d'auteur : Ce document est protégé en vertu du Code de la Propriété Intellectuelle.
Confidentiel jusqu'au 04/10/2027