Titre original :

Élaboration d’aciers ODS (Oxide Dispersion Strengthened) par fabrication additive laser et cold spray : compréhension des relations procédés - microstructures

Titre traduit :

Elaboration of ODS steels (Oxide Dispersion Strengthened) by laser additive manufacturing and cold spray : an understanding of the processes - microstructures relationships

Mots-clés en français :
  • Aciers renforcés par dispers
  • Fabrication additive
  • Fusion sélective par laser
  • Projection dynamique à froid

  • Acier ferritique
  • Métallurgie des poudres
  • Oxyde d'yttrium
  • Combustibles nucléaires -- Gaines
  • Fusion nucléaire par confinement magnétique
Mots-clés en anglais :
  • ODS steels
  • Additive manufacturing
  • Cold spray
  • Selective Laser Melting
  • Nuclear Fusion

  • Langue : Français
  • Discipline : Milieux denses, matériaux et composants
  • Identifiant : 2022ULILR004
  • Type de thèse : Doctorat
  • Date de soutenance : 02/03/2022

Résumé en langue originale

Les aciers ODS (Oxide Dispersion Strengthened) ferrito-martensitiques sont des matériaux qui présentent une très bonne résistance au fluage et au gonflement sous irradiation. Ces propriétés en font des candidats très étudiés pour les matériaux de gainage des réacteurs de génération IV, ou de structure pour les réacteurs à fusion thermonucléaire. La dispersion des nano-oxydes qui renforcent le matériau est obtenue par métallurgie des poudres. Le co-broyage d’une poudre d’acier atomisée avec une poudre d’oxyde (Y2O3) conduit à la dissolution de l’oxyde dans la matrice. Lors de la consolidation à chaud (CIC ou extrusion à chaud) la précipitation des nano-oxydes a lieu. La conception de composants avec ces matériaux et leur géométrie finale pourraient être améliorée grâce à la fabrication additive (FA). Les récentes évolutions des technologies de FA pourraient permettre de diminuer les délais et coûts de production, tout en augmentant la complexité géométrique et fonctionnelles des pièces. Elles offrent une nouvelle liberté de conception par rapport aux procédés de fabrication soustractive conventionnels.L’objectif de ces travaux de thèse a été d’évaluer les potentiels de différentes techniques de fabrication additive (SLM, DMD, et Cold Spray) pour les aciers ODS.Trois types de poudre ODS (co-broyée, composite et STARS) ont été obtenus pour déterminer les couples poudre – procédé les plus intéressants. Les matériaux élaborés à partir de ces différentes combinaisons ont été caractérisés à plusieurs échelles. Leur quantité de défauts macroscopiques (porosités, fissures) a été analysé afin d’optimiser les paramètres de fabrication. Leur microstructure granulaire a été observée avant et après recuit à 1100 °C par microscopie optique, électronique et EBSD. La nano-précipitation a été analysée par MEB, MET et par diffusion des rayons-X aux petits angles. Une méthode d’analyse d’image alliant des acquisitions en microscopie électronique en haute définition et un logiciel par apprentissage supervisé a été utilisée. Enfin, les propriétés mécaniques de traction à chaud des différents matériaux ont été évaluées et sont en bon accord avec leurs caractéristiques microstructurales.Les résultats obtenus indiquent que les procédés de fabrication laser (SLM, DMD) ne permettent pas d’obtenir des aciers ODS avec de bonnes performances, quel que soit le type de poudre utilisé. L’yttrium forme des phases grossières fragiles et la population de nano-précipités est peu dense. Cela conduit à des propriétés de traction équivalentes à un acier non renforcé. La méthode d’élaboration d’une poudre composite mise en place permet néanmoins d’adapter très facilement la nature et teneur des renforts ajoutés. L’utilisation de renforts TiC conduit à des microstructures très fines et composées de grains équiaxes. Ces microstructures atypiques en fabrication additive laser offrent des perspectives intéressantes.Les aciers ODS obtenus par cold spray à partir d’une poudre co-broyée présentent des caractéristiques semblables à des aciers ODS conventionnels. Après recuit, ceux-ci présentent une microstructure similaire aux aciers ODS obtenus par CIC. Toutefois, les grains grossiers occupent une fraction plus importante de la microstructure, ce qui atteste d’une recristallisation plus avancée. La dureté et la limite élastique moins élevées de ce matériau par rapport à son équivalent CIC confortent ce résultat qui est encourageant pour mettre en forme le matériau. La grande densité de nano-oxydes Y-Ti-O dans l’acier ODS Cold Spray lui permet d’avoir une résistance mécanique à 700 °C supérieure de 50 MPa par rapport à l’ODS CIC. Le matériau Cold-Spray présente toutefois une perte de ductilité qu’il conviendra de mieux comprendre afin de proposer des solutions. Les analyses conduites ont permis de proposer des mécanismes pour expliquer ce comportement qui serait causé par la présence de microfissures et de porosités dans la pièce.

Résumé traduit

ODS (Oxide Dispersion Strengthened) steels are materials that exhibit very good resistance to creep and swelling under irradiation. These properties make them good candidates for cladding materials in Generation IV reactors, or for structural materials in thermonuclear fusion reactors. The dispersion of the nano-oxides, which reinforce the material, is obtained by powder metallurgy. Mechanical-alloying of an atomized steel powder with an oxide powder (Y2O3) results in the oxide dissolution in the matrix. During hot consolidation (hot isostatic pression or hot extrusion), the precipitation of the nano-oxides takes place. Designs of component with these materials and their final geometry could be improved using additive manufacturing.Since the 2010s, recent developments in additive manufacturing technologies could enable to reduce lead times and costs, while increasing the geometric, hierarchical and functional complexity of parts. They pave the way to new freedom of design compared to conventional subtractive manufacturing processes.The objective of this thesis work was to assess the potentials of different additive manufacturing techniques (SLM, DMD, and Cold Spray) for ODS steels.Thus, three types of ODS powder (mechanically-alloyed, composite and STARS) were obtained to determine the most interesting powder-process combinations. The materials produced from these different combinations have been characterized at several scales. The amount of macroscopic defects (porosities, cracks) was analyzed in order to optimize the manufacturing parameters. Their granular microstructure was observed before and after annealing at 1100 °C by optical and electron microscopy (SEM, EBSD). The nano-precipitation was analyzed by SEM, TEM and by small angle X-rays scattering. An image analysis method combining high definition electron microscopy images and a machine learning software was implemented. Finally, the high temperature tensile properties of these different materials were evaluated and are in good agreement with their microstructural characteristics. The comparison of the whole characterization results enabled to select the relevant manufacturing paths.The results obtained indicate that laser additive manufacturing processes (SLM, DMD) lead to ODS steels with low performance, regardless the type of powder used. The yttrium content can greatly decrease after consolidation. It also forms fragile Y-rich coarse phases, and the density of the nano-precipitates population appears very low. These microstructural characteristics induce tensile properties equivalent to those of an unreinforced steel. Nevertheless, the composite powder elaboration method implemented in this work makes it very easy to adapt the nature and content of the reinforcements added to the base powder. Using TiC nano-particles, very fine microstructures composed of equiaxed grains were obtained. These unusual microstructures in laser additive manufacturing offer interesting prospects.ODS steels obtained by cold spray from a mechanically-alloyed powder have characteristics similar to conventional ODS steels. After annealing, these materials have a microstructure similar to the ODS steels obtained by HIP. However, the coarse grains take up a much larger fraction of the microstructure and attest to a more advanced recrystallization. The lower hardness and elastic limit of this material compared to its HIP equivalent confirm this result, which is very encouraging if further shaping should be aimed. The very high density of Y-Ti-O nano-oxides in the Cold Sprayed ODS steel enables to achieve a mechanical resistance at 700 °C which is 50 MPa higher than the HIPed ODS. However, this material exhibits a loss of ductility which will have to be resolved. The analyzes carried out enabled to suggest two mechanisms to explain this damage, which would be caused by the presence of microcracks and porosities in the part.

  • Directeur(s) de thèse : Legris, Alexandre
  • Président de jury : Perez, Michel
  • Membre(s) de jury : Aubry, Pascal - Carlan, Yann de - Bacroix, Brigitte - Zollinger, Julien - Villaret, Flore
  • Rapporteur(s) : Perez, Michel - François, Manuel
  • Laboratoire : UMET - Unité Matériaux et Transformations
  • École doctorale : École doctorale Sciences de la matière, du rayonnement et de l'environnement (Villeneuve d'Ascq, Nord)

AUTEUR

  • Autones, Lucas
Droits d'auteur : Ce document est protégé en vertu du Code de la Propriété Intellectuelle.
Accès libre