Titre original :

Spectroscopic characterization of molecules of atmospheric interest : internal dynamics and microsolvation with hydrogen sulfide (H2S)

Titre traduit :

Caractérisation spectroscopique de molécules d’intérêt atmosphérique : dynamique interne et microsolvatation avec le sulfure d’hydrogène (H2S)

Mots-clés en français :
  • Microsolvatation

  • Composés organiques volatils biogéniques
  • Monoterpènes
  • Aérosols organiques secondaires
  • Spectroscopie de microondes
  • Fourier, Spectroscopie par transformée de
  • Dynamique moléculaire
  • Chimie quantique
  • Sulfure d'hydrogène
  • Solvatation
  • Rotation moléculaire
Mots-clés en anglais :
  • Rotational spectroscopy
  • Quantum chemical calculations
  • Microsolvation
  • Large amplitude motions
  • Chirped-pulse Fourier transform microwave spectrometer

  • Langue : Anglais
  • Discipline : Chimie théorique, physique, analytique
  • Identifiant : 2021LILUR062
  • Type de thèse : Doctorat
  • Date de soutenance : 14/12/2021

Résumé en langue originale

Les composés organiques volatils biogéniques (COVBs), et en particulier les monoterpènes (C10H16), sont des molécules naturellement présentes dans l’atmosphère, qui sont liées à la formation d’aérosols organiques secondaires (SOA). Ils peuvent altérer les propriétés physiques et chimiques de l’atmosphère, avoir des effets négatifs sur la santé humaine et contribuer aux changements climatiques. Une forte relation existe entre la structure d’un système moléculaire et les interactions inter- et intramoléculaires présentes à l’échelle moléculaire. Par conséquent, l’accès aux informations sur la structure, en phase gazeuse, et la dynamique interne pourrait être essentiel pour prédire les voies possibles de réaction ou de la formation de complexes et d’agrégats.La spectroscopie micro-ondes à transformée de Fourier (FTMW) une fois combinée aux calculs de chimie quantique, sont une approche fiable pour étudier le paysage conformationnel, la structure et la dynamique interne de plusieurs types des molécules, et notamment les molécules d’intérêt atmosphérique, leurs produits d’oxydation et leurs complexes associés.Dans le cadre de cette thèse, nous avons appliqué cette approche théorique-expérimentale pour caractériser les complexes de deux monoterpénoïdes : le fenchol (C10H18O) et la fenchone (C10H16O) avec un autre contaminant atmosphérique, à savoir le H2S. Les conformations stables en phase gazeuse ont été identifiées dans le spectre de rotation pure à l’aide des calculs ab initio et DFT. Une analyse comparative des complexes observés avec leurs analogues hydratés a confirmé la présence d’une liaison hydrogène plus faible. En plus, nous avons observé un mouvement de grande amplitude, décrit qualitativement. Les interactions non covalentes stabilisantes des deux complexes ont également été évaluées.De manière similaire, et dans le même contexte général, nous avons également caractérisé le paysage conformationnel et la rotation interne du groupe méthyle dans le cas de la limona cétone (C9H14O), qui est un BVOC issu de l’oxydation du limonène. La hauteur de barrière expérimentale de la torsion du méthyle a montré un certain écart par rapport aux valeurs calculées, ce qui nous a poussé vers une investigation plus approfondie, qui a révélé la présence d’une interaction intermoléculaire.La deuxième partie de cette thèse a été consacrée à la construction et à l’évaluation d’un nouveau spectromètre FTMW à dérive de fréquence, large bande (6-18 GHz). Une description technique détaillée du spectromètre est donnée dans ce manuscrit. De plus, les tests préliminaires effectués pour évaluer les performances du spectromètre sont rapportés.

Résumé traduit

Biogenic volatile organic compounds (BVOCs), and especially monoterpenes (C10H16), are molecules naturally occurring in the atmosphere, which have been linked to the formation of secondary organic aerosol (SOA). They can alter the physical and chemical properties in the atmosphere, have negative effects on human health and contribute to climate change. There exists a strong relationship between the structure of a molecular system and the inter- and intramolecular interactions present on the molecular scale.Hence, having in-depth information about the gas phase structure and internal dynamics of these molecules, or their molecular complexes, is important to better understand their reaction pathways and complexation patterns.The synergic combination of quantum chemical calculations and Fourier transform microwave (FTMW) spectroscopy has been shown to be a reliable approach to examine the conformational landscape, structure and internal dynamics of several types of molecules of atmospheric interest, their oxidation products and their complexes. In the framework of this thesis, we have applied this theoretical-experimental approach to characterize the complexes of two monoterpenoids: fenchol (C10H18O) and fenchone (C10H16O) with another atmospheric contaminant: the H2S molecule. The gas phase stable conformations were identified in the pure rotational spectrum with the supportof ab initio and DFT calculations. A comparative analysis of the observed complexes with their water analogues confirmed the presence of weaker hydrogen bonds. On top of that, we observed a large amplitude motion, that was qualitatively described. The stabilizing non-covalent interactions of the two complexes were also evaluated.In a similar manner, and within the same general context, we also characterized the conformational landscape and methyl internal rotation in the case of limona ketone (C9H14O), which is a biogenic volatile organic compounds (BVOC) originating from the oxidation limonene. The experimental barrier height of the methyl torsion showed some deviation from the calculated values, which pushed toward a more thorough examination, that revealed the presence of an intermolecular interaction.The second part of this thesis was dedicated to the construction and evaluation of a broadband chirped pulse FTMW spectrometer, operating in the range 6-18 GHz. A detailed technical description of the spectrometer is given herein. Moreover, the preliminary tests performed to evaluate the performance of the spectrometer are reported.

  • Directeur(s) de thèse : Huet, Thérèse
  • Président de jury : Petitprez, Denis
  • Membre(s) de jury : Dréan, Pascal - Georges, Robert - Martin-Drumel, Marie-Aline
  • Rapporteur(s) : Kleiner, Isabelle - Asselin, Pierre
  • Laboratoire : Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM)
  • École doctorale : École doctorale Sciences de la matière, du rayonnement et de l'environnement (Villeneuve d'Ascq, Nord)

AUTEUR

  • Osseiran, Noureddin
Droits d'auteur : Ce document est protégé en vertu du Code de la Propriété Intellectuelle.
Accès libre