Titre original :

Theoretical and experimental studies on the hygroscopic properties of soot particles sampled from a kerosene diffusion flame : impact of the aging processes by O3 and SO2

Titre traduit :

Etudes théoriques et expérimentales sur les propriétés hygroscopiques de particules de suie prélevées sur une flamme de diffusion de kérosène : impact des processus de vieillissement de l'O3 et du SO2

Mots-clés en français :
  • Hygroscopicité
  • Théorie de Köhler

  • Suie
  • Suie
  • Nuages -- Physique
  • Noyaux glaçogènes
  • Pression de vapeur
  • Spectrométrie de masse des ions secondaires
  • Polluants atmosphériques
  • Aérosols atmosphériques
  • Langue : Anglais
  • Discipline : Energétique, thermique, combustion
  • Identifiant : 2019LILUR035
  • Type de thèse : Doctorat
  • Date de soutenance : 26/04/2019

Résumé en langue originale

Les particules de suie émises par les processus de combustion sont hydrophobes. Cependant leurs caractéristiques morphologiques et chimiques sont modifiées lorsqu’elles séjournent dans l’atmosphère. Elles peuvent alors devenir des noyaux de condensation (CCN) ou glaciogènes (IN) et contribuer de manière significative au forçage radiatif indirect affectant le climat. Pour les aérosols sphériques et mono dispersés, la théorie de k-Köhler est souvent utilisée pour quantifier les propriétés hygroscopiques des aérosols. Dans ce travail une approche théorique et expérimentale est proposée afin d’étendre la théorie à des distributions de tailles et de morphologies d’aérosols plus complexes. Les propriétés hygroscopiques des particules sont déterminées en mesurant leur fraction activée en fonction de la sursaturation en eau au moyen d’un compteur de CCN. Le modèle développé est d’abord testé sur des particules sphériques et isolées de sulfate d’ammonium. Puis il est appliqué aux agrégats complexes de particules de suie. Les suies sont générées dans une flamme de diffusion de kérosène, et ensuite exposées à des concentrations variables d’ozone et de dioxyde de soufre dans des conditions contrôlées de température, pression et humidité relative. La mobilité électrique, la morphologie et la composition chimique de surface sont mesurés par granulométrie, microscopie électronique et spectrométrie de masse par ion secondaires respectivement, avant et après le vieillissement, et reliées au processus d’activation. A partir de la comparaison entre les courbes d’activation et le modèle, les valeurs du paramètre d’hygroscopicité k ont été déterminées pour une large gamme de conditions opératoires.

Résumé traduit

Freshly emitted soot particles from combustion processes are hydrophobic. However, the aging process in the atmosphere can modify their size, morphology and surface chemistry and turn them into efficient cloud condensation (CCN) and ice nuclei (IN) that significantly contribute to the indirect radiative forcing of climate. For spherical and monodisperse aerosols, k-Köhler theory is often used in the literature to quantify the hygroscopic properties of aerosols. In this work, a combined theoretical and experimental approach is proposed to add to the theory the contributions of the particle size distribution and morphology. Hygroscopic properties of the particles are derived by measuring their activated fraction as a function of the water supersaturation using a CCN counter. The model developed in this work is first tested on dry ammonium sulfate particles (quasi spherical and non aggregating). Then, it is applied to soot particles that are complex aggregates of primary particles. Soot particles are generated from a laboratory diffusion jet flame supplied with kerosene, and aged with ozone and sulfur dioxide in controlled conditions of temperature, pressure and relative humidity to simulate their permanence in the atmosphere. The electrical mobility, morphology and chemical composition of fresh and aged soot are measured by scanning mobility particle sizing, electron microscopy and secondary ion mass spectrometry, respectively, before and after the aging and related to the activation process. From the comparison of the experimental activation curves and the model, the values of the hygroscopicity parameter k could be determined for a large variety of operating conditions.

  • Directeur(s) de thèse : Desgroux, Pascale - Faccinetto, Alessandro
  • Laboratoire : PhysicoChimie des Processus de Combustion et de l’Atmosphère (PC2A)
  • École doctorale : École doctorale Sciences de la matière, du rayonnement et de l'environnement (Villeneuve d'Ascq, Nord)

AUTEUR

  • Wu, Junteng
Droits d'auteur : Ce document est protégé en vertu du Code de la Propriété Intellectuelle.
Accès libre