Titre original :

Development of a physiologically-relevant in-vitro microfluidic model for monitoring of pancreatic cancer cells interactions with the liver

Titre traduit :

Développement d’un modèle microfluidique in-vitro d’intérêt sur le plan physiologique pour l’étude et le suivi des interactions entre le foie et les cellules cancéreuses du pancréas

Mots-clés en français :
  • Coculture
  • Microvasculature du foie

  • Cellules hépatiques
  • Pancréas -- Maladies
  • Cellules -- Adhésivité
  • Microfluidique
  • Tumeurs -- Vaisseaux sanguins
  • Chimiotaxie
  • Langue : Anglais, Français
  • Discipline : Micro-nanosystèmes et capteurs
  • Identifiant : 2017LIL10093
  • Type de thèse : Doctorat
  • Date de soutenance : 06/10/2017

Résumé en langue originale

Le procédé de la métastase cancéreuse et sa compréhension sont devenus un des sujets majeurs de recherche en Biologie. En utilisant des modèles in-vitro en culture statique et dynamiques, nous avons étudié la possibilité de reproduire l’environnement physiologique in-vivo avec ces modèles. Nous avons développé un modèle de coculture hiérarchique dans des plaques à fond en PDMS. Composé d’hépatocytes, de pericytes et de cellules endothéliales. Dans différentes conditions, l’influence de ces cellules sur l’adhésion de cellules cancéreuses ou promyéloblastiques a été analysée ainsi que leur effet sur l’état inflammatoire du système. Afin de reproduire le flux sanguin et les forces de cisaillement présents in-vivo, le modèle a été transféré dans un système microfluidique. Le système se compose de trois canaux séparés par des micro-piliers, pouvant être remplis indépendamment. Les pericytes insérés dans du gel, les hépatocytes, les cellules endothéliales et finalement les cellules cancéreuses ont été injectés de façon successive afin de reproduire l’environnement in-vivo. Les cellules ont été trouvées viables durant toute la culture et des marqueurs relatifs au foie et à l’inflammation exprimés. L’influence des hépatocytes et des pericytes a été analysé. Il a été observé que les cellules cancéreuses adhérées dans le canal du haut étaient attirées par les autres cellules dans les diffèrent canaux. Les modèles établis posent de solides bases pour d’autres systèmes plus complexes et d’intérêt pouvant servir de complément aux modèles in-vivo lors de la recherche de nouvelles substances médicamenteuses.

Résumé traduit

The cancer metastatic process and its understanding have been a major topic of interest for researchers in the past. Using in-vitro models in both standard culture conditions and in microfluidic devices, we investigated the feasibility of such models in the representation of the physiological in-vivo situation. We developed a hierarchical coculture model in PDMS plates, composed of hepatocytes, pericytes and endothelial cells. In different culture conditions, the influence of the different cells composing the model on the adhesion of cancer cells and promyeloblastic cells was investigated as well as the influence on the inflammatory state of the culture. To reproduce the in-vivo blood flow and shear stress to which the endothelial cells and the adhering cells are subjected, the model was then transferred into a microfluidic biochip. The device was composed of three channels, separated by micropillars and which could be filled independently one from another. Pericytes embedded in a hydrogel, hepatocytes, endothelial cells and finally pancreatic cancer cells could be inserted successively to reproduce the in-vivo hierarchical situation. Cells were found to viable after the culture and markers related to the liver and inflammation to be expressed. The influence of the presence of hepatocytes and pericytes was investigated by varying the culture conditions. It was found that pancreatic cancer cells were attracted by the cells in other channels in coculture. The established models lay the bases for more complex and relevant systems that could complement their in-vivo counterparts in the drug discovery process.

  • Directeur(s) de thèse : Senez, Vincent - Collard, Dominique
  • Laboratoire : Institut d'Electronique, de Microélectronique et de Nanotechnologie
  • École doctorale : École doctorale Sciences pour l'ingénieur (Lille)

AUTEUR

  • Danoy, Mathieu
Droits d'auteur : Ce document est protégé en vertu du Code de la Propriété Intellectuelle.
Accès libre