Titre original :

Contribution à l'économétrie des séries temporelles à valeurs entières

Titre traduit :

Contribution to econometrics of time series with integer values

Mots-clés en français :
  • Bord de l’espace des paramètres
  • Consistance et normalité asymptotique
  • Modèles INAR
  • Modèles INGARCH
  • Estimateur du quasi maximum de vraisemblance de Poisson
  • Test portmanteau
  • Test d’adéquation
  • Séries temporelles multivariées à valeurs entières

  • Séries chronologiques
Mots-clés en anglais :
  • Boundary of the parameter space
  • Consistency and asymptotic normality
  • Integer-Valued AR and GARCH models
  • Non-Normal asymptotic distribution
  • Poisson quasi-Maximum likelihood estimator
  • Portmanteau test
  • Goodness-Offit
  • Multivariate time series of counts

  • Langue : Français
  • Discipline : Mathématiques appliquées aux sciences économiques
  • Identifiant : 2016LIL30059
  • Type de thèse : Doctorat
  • Date de soutenance : 05/12/2016

Résumé en langue originale

Dans cette thèse, nous étudions des modèles de moyennes conditionnelles de séries temporelles à valeurs entières. Tout d’abord, nous proposons l’estimateur de quasi maximum de vraisemblance de Poisson (EQMVP) pour les paramètres de la moyenne conditionnelle. Nous montrons que, sous des conditions générales de régularité, cet estimateur est consistant et asymptotiquement normal pour une grande classe de modèles. Étant donné que les paramètres de la moyenne conditionnelle de certains modèles sont positivement contraints, comme par exemple dans les modèles INAR (INteger-valued AutoRegressive) et les modèles INGARCH (INteger-valued Generalized AutoRegressive Conditional Heteroscedastic), nous étudions la distribution asymptotique de l’EQMVP lorsque le paramètre est sur le bord de l’espace des paramètres. En tenant compte de cette dernière situation, nous déduisons deux versions modifiées du test de Wald pour la significativité des paramètres et pour la moyenne conditionnelle constante. Par la suite, nous accordons une attention particulière au problème de validation des modèles des séries temporelles à valeurs entières en proposant un test portmanteau pour l’adéquation de l’ajustement. Nous dérivons la distribution jointe de l’EQMVP et des autocovariances résiduelles empiriques. Puis, nous déduisons la distribution asymptotique des autocovariances résiduelles estimées, et aussi la statistique du test. Enfin, nous proposons l’EQMVP pour estimer équation-par-équation (EpE) les paramètres de la moyenne conditionnelle des séries temporelles multivariées à valeurs entières. Nous présentons les hypothèses de régularité sous lesquelles l’EQMVP-EpE est consistant et asymptotiquement normal, et appliquons les résultats obtenus à plusieurs modèles des séries temporelles multivariées à valeurs entières.

Résumé traduit

The framework of this PhD dissertation is the conditional mean count time seriesmodels. We propose the Poisson quasi-maximum likelihood estimator (PQMLE) for the conditional mean parameters. We show that, under quite general regularityconditions, this estimator is consistent and asymptotically normal for a wide classeof count time series models. Since the conditional mean parameters of some modelsare positively constrained, as, for example, in the integer-valued autoregressive (INAR) and in the integer-valued generalized autoregressive conditional heteroscedasticity (INGARCH), we study the asymptotic distribution of this estimator when the parameter lies at the boundary of the parameter space. We deduce a Waldtype test for the significance of the parameters and another Wald-type test for the constance of the conditional mean. Subsequently, we propose a robust and general goodness-of-fit test for the count time series models. We derive the joint distribution of the PQMLE and of the empirical residual autocovariances. Then, we deduce the asymptotic distribution of the estimated residual autocovariances and also of a portmanteau test. Finally, we propose the PQMLE for estimating, equation-by-equation (EbE), the conditional mean parameters of a multivariate time series of counts. By using slightly different assumptions from those given for PQMLE, we show the consistency and the asymptotic normality of this estimator for a considerable variety of multivariate count time series models.

  • Directeur(s) de thèse : Francq, Christian - Zakoian, Jean-Michel
  • Président de jury : Mélard, Guy
  • Membre(s) de jury : Francq, Christian - Mélard, Guy - Gonclaves, Maria Esmeraldas Elavas - Zakoian, Jean-Michel - Kokonendji, Célestin Clotaire
  • Rapporteur(s) : Gonclaves, Maria Esmeraldas Elavas - Fokianos, Kostantinos
  • Laboratoire : LEM - Lille Économie Management
  • École doctorale : École doctorale Sciences de l'homme et de la société (Lille ; 2006-....)

AUTEUR

  • Ahmad, Ali
Droits d'auteur : Ce document est protégé en vertu du Code de la Propriété Intellectuelle.
Accès libre