Titre original :

Broad band electromagnetic perfect metamaterial absorbers

Titre traduit :

Absorbants électromagnétiques parfaits et large bande à base de métamatériaux

Mots-clés en français :
  • Large bande

  • Métamatériaux
  • Absorbants et adsorbants
  • Électromagnétisme
  • Micro-ondes
  • Furtivité (science militaire)
  • Compatibilité électromagnétique
  • Langue : Anglais
  • Discipline : Micro et nanotechnologies, Acoustique et Télécommunications
  • Identifiant : 2016LIL10076
  • Type de thèse : Doctorat
  • Date de soutenance : 05/10/2016

Résumé en langue originale

Ce travail de thèse concerne les structures artificielles à base de métamatériaux permettant la réalisation d’absorbants parfaits. Après une brève introduction des métamatériaux, de leur fonctionnement en tant qu’absorbants et de l’état de l’art, quatre types de structures fonctionnant en bandes centimétrique ou millimétrique ont été conçus puis fabriqués à savoir (i) des réseaux de cubes BaSrTiO3 (BST) basés sur les résonances de Mie, (ii) des réseaux désordonnés composés d’anneaux métalliques mettant en jeu des effets de résonance semblables aux systèmes plasmoniques (iii) des absorbants à quatre résonateurs élémentaires sur substrat flexible et (iv) des réseaux multicouches métal-diélectrique de forme pyramidale. Pour l’ensemble, des simulations numériques, corroborées par l’expérience en guide d’onde ou en espace libre, montrent l’existence d’un moment magnétique. Celui-ci est induit par une boucle des courants de déplacement et de conduction. Pour les structures périodiques, les conditions de grande largeur de bande d’absorption ont été établies sur la base du piégeage et de la dissipation de l’énergie incidente. Pour les réseaux désordonnés, il est montré le rôle capital des couplages entre résonateurs. Des structures périodiques à base de ferroélectrique de dimensions sous longueur d’onde ont été assemblées avec succès tandis que des absorbants flexibles ont été réalisés par technique d’impression jet d’encre montrant l’amélioration d’un facteur quatre de la bande d’absorption. Des améliorations comparables ont été obtenues à l’aide de réseaux d’anneaux, dont les positions dans le plan sont désordonnées, résultant de la distribution des fréquences de résonance par effet de couplage fort entre les résonateurs.

Résumé traduit

In this thesis broadband Metamaterial Perfect Absorbers (MPAs) have been investigated. Following a brief introduction of metamaterials, operating mechanisms and state of the art of MPA, four absorber types operating either at centimeter or millimeter wavelengths have been designed and fabricated namely :(i) Mie-resonance based BaSrTiO3 (BST) arrays operating at microwaves, (ii) plasmonic-type disordered ring-shaped MPA, (iii) four patches millimeter wave flexible absorbers (iv) Pyramidal metal/dielectric stacked resonator arrays. For all the structures, it was demonstrated, through numerical simulations, assessed by characterization in a waveguide configuration or in free space, that unit absorbance relies on magnetic resonances induced by a current loop combining displacement and conduction currents. For periodic arrays, the condition for a broad band operation was established via the optimization of dissipation and trapping of electromagnetic energy in the resonators. For disordered metamaterials, it was shown the major role played by the magnetic dipole-dipole interaction. From the technological side, Ferroelectrics cube arrays with subwavelength dimensions were assembled onto a metal plate while flexible multi-resonators periodic arrays were successfully fabricated by ink-jet printing showing a fourfold enhancement of the absorbance bandwidth thanks to the overlapping of resonance frequencies. Comparable improvement in the bandwidth was also pointed out with randomly position metal ring arrays due to the distribution of resonance frequencies that result from tight in-plane resonator coupling.

  • Directeur(s) de thèse : Lippens, Didier - Lheurette, Éric
  • Laboratoire : Institut d'Electronique, de Microélectronique et de Nanotechnologie
  • École doctorale : École doctorale Sciences pour l'ingénieur (Lille)

AUTEUR

  • Hao, Jianping
Droits d'auteur : Ce document est protégé en vertu du Code de la Propriété Intellectuelle.
Accès libre