Titre original :

Thermoélectricité non-conventionnelle basée sur les technologies silicium en film minces

Titre traduit :

Non-conventional thermoelectrics based on thin-film silicon technologies

Mots-clés en français :
  • Ingénierie phononique
  • Réduction de conductivité thermique

  • Énergie -- Conversion directe
  • Générateurs thermoélectriques
  • MOS complémentaires
  • Technologie silicium sur isolant
  • Semiconducteurs
  • Micro-fabrication
  • Langue : Anglais, Français
  • Discipline : Micro et Nanotechnologies, Acoustique et Télécommunications
  • Identifiant : 2016LIL10006
  • Type de thèse : Doctorat
  • Date de soutenance : 07/01/2016

Résumé en langue originale

La thermoélectricité convertit fiablement l’énergie thermique en énergie électrique de manière directe, silencieusement et sans vibrations. Dans le contexte des réserves limitées en énergies fossiles, de l’effet de serre et de besoin énergétiques mondiaux en hausse, la récupération d’énergie thermique dissipée peut être une solution d'appoint. Un bon matériau thermoélectrique intègre des propriétés antagonistes : haute conductivité électrique (σ) et faible conductivité thermique (κ). La thermoélectricité conventionnelle utilise des matériaux nocifs, complexes, coûteux et incompatible avec des techniques de fabrication massive ex. CMOS rendant la thermoélectricité peu populaire sur le marché. En revanche, les matériaux CMOS, à savoir le silicium (Si), le germanium (Ge) et le silicium-germanium (SixGe1-x), sont simples, facilement approvisionnables et industriellement compatibles. Ils offrent une excellente conductivité électrique (σ) mais leur utilisation dans la thermoélectricité est limitée par une conductivité thermique (κ) trop élevée. Les progrès récents dans les domaines de micro et nano-fabrication permettent de réduire κ sans affecter σ. Cela permet de fabriquer des générateurs thermoélectriques (TEG) compatibles CMOS, tout en gardant une production massive réduisant le coût. Les simulations présentées placent Si, Ge et SixGe1-x dans une position compétitive par rapport aux matériaux thermoélectriques conventionnels, à condition de réduire substantiellement κ. Une réduction de la conductivité thermique d'un facteur 3 a été expérimentalement démontrée dans des membranes de Si intégrées au sein d'une plateforme micrométrique conçue, fabriquée et caractérisée dans le cadre de cette thèse.

Résumé traduit

Thermoelectricity converts heat into electric energy in a silent, direct, vibrationless and reliable way. In light of limited reserves in fossil fuels, increasing greenhouse effect and constantly rising worldwide demand in energy, recovering heat losses can be a solution. Good thermoelectric material integrates antagonistic properties: high crystal-like electrical (σ) and low glass-like thermal (κ) conductivities. Conventional thermoelectricity uses materials that are harmful, complex, expensive and incompatible with mainstream fabrication technologies e.g. CMOS making thermoelectricity unpopular. In constrast, CMOS materials, namely Silicon (Si), Germanium (Ge) and Silicon-Germanium (SixGe1-x), are simple, easy-to-get, cheap and industrially compatible offering a high electrical conductivity (σ). However, their usage in thermoelectricity is hindered due to a prohibitive thermal conductivity (κ). Recent progress in nano- and micro-fabrication opened new possibilities to reduce κ with minor impact on σ. This opportunity enables fabrication of CMOS compatible ThermoElectric Generators (TEGs) enabling massive production and cost reduction which can significantly popularize TEGs on the market. Our modelling approach place Si, Ge and SixGe1-x in a competitive position compared with conventional thermoelectrics providing that their high bulk κ can be substantially reduced. Within the framework of this thesis, a 3-fold size induced κ reduction in Si is experimentally obtained based on a micrometer measurement platform that has been designed, fabricated and characterized in this work.

  • Directeur(s) de thèse : Dubois, Emmanuel - Skotnicki, Thomas
  • Laboratoire : Institut d'Electronique, de Microélectronique et de Nanotechnologie
  • École doctorale : École doctorale Sciences pour l'ingénieur (Lille)

AUTEUR

  • Haras, Maciej
Droits d'auteur : Ce document est protégé en vertu du Code de la Propriété Intellectuelle.
Accès libre