Titre original :

Rôle du stress oxydant et des cassures de l’ADN dans l’émergence néoplasique post-sénescence

Titre traduit :

Role of oxidative DNA damage in post-senescence neoplastic emergence

Mots-clés en français :
  • Sénescence
  • ADN
  • Stress oxydatif
  • Vieillissement cellulaire

  • Stress oxydatif
  • ADN -- Altération
  • Stress oxydatif
  • Vieillissement de la cellule
  • Altération de l'ADN
  • Cassures simple-brin de l'ADN
  • Cassures double-brin de l'ADN
Mots-clés en anglais :
  • Senescence
  • Cancer initiation
  • DNA Single-Strand Breaks
  • PARP1
  • P16 keratinocytes
  • Oxidative stress
  • HMEC

  • Langue : Français
  • Discipline : Biologie cellulaire (Médecine)
  • Identifiant : 2015LIL2S022
  • Type de thèse : Doctorat
  • Date de soutenance : 28/09/2015

Résumé en langue originale

La sénescence est un état d’arrêt prolifératif mis en place par les cellules en réponse à des dommages à l’ADN. Elle est considérée comme un mécanisme de protection qui s’oppose à l’initiation et au développement d’un cancer. Or, les mécanismes de sénescence et la capacité des cellules à s’échapper de cet état et à générer des cellules transformées semblent varier selon les types cellulaires. Chez les kératinocytes humains normaux de peau (NHEKs), la sénescence est transitoire et débouche pour la plupart des cellules sur une mort par autophagie et, pour environ une sur dix mille, sur une émergence néoplasique post-sénescence. Les cellules émergentes présentent des caractères de transformation et accumulent des mutations et des délétions. Cet échappement néoplasique de la sénescence n’est jamais observé dans les fibroblastes normaux de peau (NHDFs) qui, au contraire, une fois en sénescence sont bloqués irréversiblement dans le cycle cellulaire.J’ai participé dans un premier temps à l’étude du rôle de l’autophagie dans la balance échappement néoplasique et mort des NHEKs sénescents. Nous avons pu démontrer que les progéniteurs de cellules néoplasiques ont une activité autophagique modérée plus faible que ceux qui subissent la mort. Ainsi, ils échappent à la mort par autophagie tout en gardant un niveau d’activité autophagique de ménage suffisant pour éliminer leurs composés altérés par le stress oxydant et être capable de ré-entrer en mitose.J’ai ensuite cherché à caractériser les dommages oxydants mutagènes impliqués dans l’échappement néoplasique. Ma stratégie a été d’analyser de façon comparative les NHEKs par rapport aux NHDFs, puisque les uns mais non les autres développent une émergence néoplasique. J’ai ainsi pu constater que le taux de cassures augmente à la sénescence dans les deux types cellulaires, mais que ces cassures sont de nature différente, uniquement des SSBs (Single Strand Breaks) pour les NHEKs et principalement des DSBs (Double Strand Breaks) pour les NHDFs. L’accumulation de DSBs à la sénescence des NHDFs s’accompagne d’une induction robuste de la voie DDR (DNA Damage Response), d’une activation la voie p53-p21 et d’un arrêt stable dans le cycle cellulaire. Dans le cas des NHEKs, l’augmentation du taux de SSBs est la conséquence de l’augmentation du niveau de stress oxydant et de la perte de l’expression et de l’activité de la PARP1. Ceci contribue à une agglomération aberrante de XRCC1 au niveau des cassures engendrant une induction de la voie p38MAPK - p16INK4a et un arrêt dans le cycle cellulaire caractéristique de la sénescence. D’une manière paradoxale, l’échappement néoplasique de la sénescence dépend également de cette accumulation de SSBs non réparés. Ainsi, la nature des dommages à l’ADN influence le devenir des cellules sénescentes. Les DSBs renforcent la stabilité de l’arrêt du cycle cellulaire alors que les SSBs promeuvent l’acquisition de mutations et l’échappement néoplasique.

Résumé traduit

Senescence is a permanent cell-cycle arrest activated in response to DNA damage. If a cell escapes from this state, it should inherit mutations and could potentially initiate a tumor. NHDFs (Normal Human Dermal Fibroblasts) display a classical irreversible and stable senescence plateau. In contrast, senescent NHEKs (Normal Human Epidermal Keratinocytes) experience two different outcomes. Most of them undergo autophagic cell death and about one on 10000 spontaneously resumes mitosis and generates clones of transformed, mutated and tumorigenic cells.I contributed in a first time to studying the role of macroautophagy in the cell death / post-senescence neoplastic emergence balance of senescent NHEKs. We have shown that macroautophagy plays antagonistic roles during senescence, inducing cell death or promoting neoplastic transformation, depending on its level of activation. Indeed, the progenitors of post-senescent emergent cells display oxidative stress and autophagic activity levels slightly lower than the average, what allows them to avoid autophagic cell death and to ensure the quality control indispensable for mitosis re-entry.Since oxidative stress is the motor of the post-senescence neoplastic emergence in NHEKs, I wondered next whether oxidative stress could operate through the generation of some mutagenic DNA damage. I took advantage of the comparison of senescent NHEKs to NHDFs. I have shown that unlike NHDFs, NHEKs do not suffer from significantly shortened telomeres, nor accumulate DSBs, do not activate a DDR (DNA Damage Response) pathway and in consequence do not significantly activate the p53/p21 pathway. Instead, they suffer from a decrease in PARP1 expression, which compromises the repair of SSBs generated by oxidative stress. In consequence, SSBR foci, precisely XRCC1 foci, become persistent. These persistent foci initiate a signalization, through p38MAPK, which leads to up-regulation of p16INK4A and to cell cycle arrest. Notably, the accumulation of unrepaired SSBs is sufficient for the post-senescence neoplastic emergence phenomenon, in addition, paradoxically to its involvement in the onset of senescence.In conclusion, senescence results from the persistence of a DNA damage signalization, but the exact nature of the damages could vary in different cell types depending on their repair capacities and could dictate completely different outcomes. Namely, persistent DSBs, including telomeric ones, dictate a permanent tumor-suppressor cell cycle arrest, whereas persistent SSBs are permissive to mutation and senescence evasion.

  • Directeur(s) de thèse : Abbadie, Corinne
  • Membre(s) de jury : Abbadie, Corinne
  • Laboratoire : Institut de biologie (Lille) - Institut de biologie de Lille - IBL / IBLI
  • École doctorale : École doctorale Biologie-Santé (Lille)

AUTEUR

  • Nassour, Joe
Droits d'auteur : Ce document est protégé en vertu du Code de la Propriété Intellectuelle.
Accès libre