Titre original :

Fault tolerant control design for hybrid systems

Titre traduit :

Commande tolérante aux fautes pour les systèmes dynamiques hybrides

Mots-clés en français :
  • Observateurs d'états
  • Commande supervisée

  • Systèmes dynamiques hybrides
  • Tolérance aux fautes (ingénierie)
  • Commande automatique
  • Détection de défaut (ingénierie)
  • Systèmes échantillonnés
  • Langue : Anglais
  • Discipline : Automatique et Informatique Industrielle
  • Identifiant : 2009LIL10068
  • Type de thèse : Doctorat
  • Date de soutenance : 02/11/2009

Résumé en langue originale

Les Systèmes Hybrides sont des systèmes dynamiques dont le comportement résulte de l’interaction entre une dynamique continue et une dynamique discrète. Cette thèse concerne la synthèse de contrôleurs tolérants aux pannes pour ce type de système. Dans une première partie, des méthodes de commande tolérante aux défauts sont proposées afin de maintenir les performances continues. Différents systèmes hybrides sont considérés en fonction du type de commutation. Deux idées sont développées: la première est de synthétiser la loi de commande tolérante afin de stabiliser chaque mode défaillant puis d’appliquer les résultats sur la stabilité des SH. La deuxième idée est de rechercher directement la stabilité du SH sans reconfigurer le contrôleur dans chaque mode défaillant instable. L’objectif de la commande tolérante peut être atteint si les effets négatifs des modes instables sont compensés par ceux des modes stables. Dans une deuxième partie, différentes techniques sont proposées afin de maintenir les spécifications discrètes. L’idée maîtresse est de reconfigurer la partie discrète en tenant compte de l’atteignabilité des dynamiques continues. Enfin, plusieurs solutions de commande supervisée tolérante aux défauts sont proposées. Les schémas reposent sur un schéma simple de commutation de contrôleur. La stabilité du système pendant la le diagnostic et le retard d’application de la commande peut être garanti. De nombreux exemples sont traités pour illustrer les performances des résultats théoriques : systèmes électroniques, moteurs à courant continu, unité centrale de traitement, systèmes manufacturiers, systèmes de transport intelligent et véhicule électrique automatisé.

Résumé traduit

Hybrid systems (HS) are dynamical systems that involve the interaction of continuous and discrete dynamics. This thesis is concerned with the design of fault tolerant controllers (FTC) for that kind of systems. Firstly, for HS with various switching a set of FTC methods based on continuous system theories are proposed to maintain the systems' continuous performance. Two natural ideas are considered: One way is first to design FTC law to stabilize each faulty mode, and then apply the stability results of HS. Another way is to research directly the stability of HS without reconfiguring the controller in each unstable faulty mode. Secondly, for HS where discrete specifications are imposed, a set of schemes are derived from discrete event system (DES) point of view to keep these discrete specifications. The key idea is to reconfigure the discrete part by taking into account the reachability of the continuous dynamics, such that the specification is maintained. Finally, based on HS approaches, several supervisory FTC schemes are developed. The proposed FTC schemes do not need a series of models or filters to isolate the fault, but only rely on a simple controller switching scheme. The stability of the system during the fault diagnosis and FTC delay can be guaranteed.The materials in the monograph have explicit and broad practical backgrounds. Many examples are taken to illustrate the applicability and performances of the obtained theoretical results, e.g. Circuit systems; DC motors; CPU process; Manufacturing system; Intelligent transportation systems and electric automated vehicles, etc.

  • Directeur(s) de thèse : Cocquempot, Vincent - Jiang, Bin
  • École doctorale : École doctorale Sciences pour l'ingénieur (Lille)

AUTEUR

  • Yang, Hao
Droits d'auteur : Ce document est protégé en vertu du Code de la Propriété Intellectuelle.
Accès libre